Lfc Bumps on Separable Banach Spaces
نویسنده
چکیده
In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function.
منابع مشابه
On Classes of Banach Spaces Admitting “small” Universal Spaces
We characterize those classes C of separable Banach spaces admitting a separable universal space Y (that is, a space Y containing, up to isomorphism, all members of C) which is not universal for all separable Banach spaces. The characterization is a byproduct of the fact, proved in the paper, that the class NU of non-universal separable Banach spaces is strongly bounded. This settles in the aff...
متن کاملIsometric Embeddings and Universal Spaces
We show that if a separable Banach space Z contains isometric copies of every strictly convex separable Banach space, then Z actually contains an isometric copy of every separable Banach space. We prove that if Y is any separable Banach space of dimension at least 2, then the collection of separable Banach spaces which contain an isometric copy of Y is analytic non Borel.
متن کاملA Representation for Characteristic Functionals of Stable Random Measures with Values in Sazonov Spaces
متن کامل
On Unconditionally Saturated Banach Spaces
We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set A, in the Effros-Borel space of subspaces of C[0, 1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y , with a Schauder basis, that contains isomorphic copies of every space X in the c...
متن کاملThe Banach spaces C(K)
Table of Contents 1. Introduction. 2. The isomorphic classification of separable C(K) spaces. A. Milutin's Theorem. B. C(K) spaces with separable dual via the Szlenk index 3. Some Banach space properties of separable C(K) spaces. A. Weak injectivity. B. c 0-saturation of spaces with separable dual. C. Uncomplemented embeddings of C([0, 1]) and C(ω ω +) in themselves. 4. Operators on C(K)-spaces.
متن کامل